
User’s Guide to VelocityDB (Tuesday, September 14, 2021)

This guide compliments the sample programs, VelocityDB Quick Start, VelocityGraph Quick Start and the API reference

provided on our site. Developers should review this in order to better understand how to a build a VelocityDB-

integrated application.

Contents
Windows: Download and install a .NET development environment .. 5

Mac (and partly Linux): Download and install a .NET development environment ... 5

Open the VelocityDB repository in Visual Studio.. 6

Opening the samples solution, VelocityDB.sln ... 8

SampleData ... 9

Using VelocityDB and VelocityGraph NuGets ... 9

If not using our NuGets, manually add project reference to VelocityDB.dll .. 11

NuGet packages for solution ... 11

Add reference to System.Transactions ... 12

GitHub ... 13

Selecting the correct VelocityDB Session Class ... 13

Using database worker thread to speed up ingest/update of data.. 14

Concurrent access to database data ... 14

Optimistic locking versus Pessimistic locking ... 14

SessionPool class ... 15

Composite Object Identifier .. 15

DatabaseLocation.. 16

Moving/Copying Databases in a DatabaseLocation to a different Host/Directory .. 16

Page Compression ... 16

Encrypt Page data ... 17

Databases .. 17

Compacting Databases .. 18

VelocityDB license database ... 18

Replication .. 18

Storing Databases in the Cloud ... 18

Microsoft Azure ... 18

ServiceFabric Remoting ... 19

Accessing remote databases without using VelocityDBServer ... 19

http://www.velocitydb.com/Samples.aspx
http://www.velocitydb.com/QuickStart.aspx
http://www.velocitydb.com/QuickStartVelocityGraph.aspx
http://www.velocitydb.com/Help/Index.aspx

Pages ... 19

Transactions .. 19

Try Catch blocks around all transactions .. 20

Why we need transaction for reads .. 20

Enabling recovery check for read transactions ... 20

Event subscription and notification .. 20

How to enable persistent objects of some class ... 21

Implementing ISerializable .. 21

Collections using OptimizedPersistable.Equals and GetHashCode .. 22

DateTime ... 22

Database Schema .. 22

Register all types that you plan on persisting ... 23

If your application schema is using indexes .. 23

Fixed size class instances and limiting string size ... 24

Adding or removing field(s) from a class with existing objects in a database .. 25

Changing a field type without losing already persisted data .. 25

Renaming a persisted class or moving it to a different namespace ... 25

VelocityGraph ... 26

Visualizing a VelocityGraph ... 26

Persistent placement of objects ... 29

Best way to persist an object .. 29

Customizing object placement (most of you can skip this part) ... 30

Controlling placement of objects persisted by reachability ... 31

Looking up objects .. 31

DO NOT reference persistent data using static variables ... 32

Updating persistent objects .. 32

Deleting (unpersisting) persistent objects .. 33

Referential integrity .. 33

Collection Classes .. 34

List<T> vs VelocityDbList<T> ... 34

Avoid using Dictionary, HashSet and any other ISerializable classes ... 34

Using the provided BTree collections ... 35

BTreeMap<Key, Value> ... 36

Indexes .. 36

Using a worker thread to add indexed objects to its indices .. 36

Class level index .. 36

Using a class level index .. 37

Index by a field .. 37

Using the index by field in a LINQ query ... 37

Changing indexing for a class after objects of that type already persisted .. 38

System.OutOfMemoryException .. 39

Limiting graph of objects in memory .. 40

Implementing your own classes with weak references .. 40

Using only weak references between objects .. 41

Lazy load of object references .. 41

Specifying depth to load at object open ... 41

Session caching of databases, pages and slots ... 41

Diagnostics .. 42

Handling exceptions thrown by VelocityDB .. 42

Database Manager .. 43

Starting Database Manager .. 44

Objects are initially lazy loaded .. 44

Browsing objects created by Baseball sample application. .. 44

Validating Objects in your databases .. 46

Backing up (copy) all your database files .. 47

Database Schema Connections ... 48

Backup & Restore using Database Manager ... 49

Create Database .. 49

Create a backup Database Location .. 50

Create some persistent objects .. 52

Simulate loosing files in original DatabaseLocation .. 52

Restore these databases from backup DatabaseLocation .. 53

Restore a backup DatabaseLocation to a brand new directory .. 54

Using LINQPad to make VelocityDB LINQ queries/browsing .. 56

Issues with current LINQPad driver .. 65

Controlling the in memory page and object caching .. 65

Verifying all objects and references .. 65

Scalability .. 66

Database backup and restore ... 66

Backup ... 66

Restore .. 66

CopyAllDatabasesTo ... 66

ExportToCSV and ImportFromCsv ... 67

VelocityDbServer.exe .. 67

Changing the default SessionBase. BaseDatabasePath in a VelocityDbServer ... 68

Option to log all activity in VelocityDBServer ... 68

Changing the tcp/ip port number used when communication with a VelocityDBServer .. 68

Enabling Windows Authentication ... 68

VelocityDBCoreServer with http REST Api .. 69

Active connections to VelocityDBCoreServer ... 70

Viewing object... 71

Updating object ... 71

Adding Object.. 74

Seetings for the VelocityDBCoreServer... 75

Chrome Json Formatter .. 78

Why installation ends up in Program Files (x86) instead of Program Files? ... 78

.NET CORE ... 78

.NET 5 and .NET Standard 2.0 ... 79

Universal Windows ... 79

Where to store databases with Universal Windows? ... 79

iOS ... 80

Android ... 80

Asp.Net Identity .. 80

Application Deployment and VelocityDB license check.. 80

Setting Up the sample Web Site (VelocityWeb) on a hosting web site (in this case GoDaddy) ... 80

Transfer all the files to your hosting account ... 80

Login to your hosting provider to enable write access to a few of the directories in the application 81

Create an application root virtual directory for the new web application ... 83

Wait a few minutes then point your browser at your web application ... 84

If you transferred your application directory with databases then install your databases in their new loacftion. 85

If all is well, you are done, access the application and the databases! .. 85

Windows: Download and install a .NET development environment
If you don’t already have, you need to download and install software that lets you edit, compile and debug .NET code.

Some choices exist but for Windows development we recommend Visual Studio Community 2019(free) with all updates

applied. The Professional or Enterprise versions can be even better, but they will cost you.

Mac (and partly Linux): Download and install a .NET development environment
If you don’t already have, you need to download and install software that lets you edit, compile and debug .NET code.

Some choices exist but for Mac development we recommend Visual Studio.

Install a Git client, we like: https://www.sourcetreeapp.com/

Go to GitHub.

In a Terminal window do:

Go to directory where you want VelocityDB code, for instance:

Last login: Thu Sep 13 15:07:20 on ttys006

Matss-Mac-mini:~ matspersson$ git clone https://github.com/VelocityDB/VelocityDB

Cloning into 'VelocityDB'...

remote: Counting objects: 15105, done.

remote: Compressing objects: 100% (276/276), done.

remote: Total 15105 (delta 418), reused 510 (delta 359), pack-reused 14462

Receiving objects: 100% (15105/15105), 4.95 MiB | 8.59 MiB/s, done.

Resolving deltas: 100% (13004/13004), done.

Matss-Mac-mini:~ matspersson$

If git isn’t already installed, you get

https://www.visualstudio.com/
https://visualstudio.microsoft.com/vs/mac/
https://www.sourcetreeapp.com/
https://github.com/VelocityDB/VelocityDB
https://github.com/VelocityDB/VelocityDB

In such a case, choose to Install it, then try this again in a fresh terminal

window.

Open the VelocityDB repository in Visual Studio

This is solution is shared with Windows. For Mac you can only run the projects in the .Net Core 3.1 folder.

Select that folder and right click (image needs to be updated to .NET Core 3.1)

Build projects in this folder.

Currently, you will probably see one build error. We are still trying to figure out how to fix that one.

By default, databases will be stored in a sub folder to /Databases so create this folder before running any sample

project.

Some of these samples and Database Manager are WPF applications and these can currently not run with .NET Core.

They will run with Windows and .NET Core 3 but not on a Mac.

Opening the samples solution, VelocityDB.sln
Open %USERPROFILE%\My Documents\VelocityDB\VelocityDB.sln

You can also start it by using the shortcut in the programs start menu.

SampleData
Many of the sample projects use data files. We expect these files to be in folder c:\SampleData

Download a zip file with this SampleData folder here.

If your C drive isn’t the best location for these large files then create the sample folder on another drive and create a link

from C:\SampleData to this location using the mklink command.

Open a Cmd window and type

[C:\]mklink /D SampleData F:\SampleData

Symbolic link created for SampleData <<===>> F:\SampleData

You may also want to do the same for C:\Databases

Using VelocityDB and VelocityGraph NuGets
This is the recommended way to add a reference to our DLLs. Right click on a project, like SupplierTracking, and select

“Manage NuGet Packages…”

https://velocitydb.com/Public/SampleData.zip

If not using our NuGets, manually add project reference to VelocityDB.dll
All sample projects should have a reference to VelocityDB.dll. The path used to VelocityDB.dll is C:\Program Files

(x86)\VelocityDb\VelocityDB.dll, if you windows directory isn’t C: or the reference is broken then you need to remove

each project reference to VelocityDB.dll and add a new one using the path to it in your installation.

NuGet packages for solution
A few of the samples including VelocityGraph project uses 3rd party NuGet libraries. These libraries are not part of the

installation but will be downloaded automatically when you attempt to build such a project. To make this happen you

need to allow NuGet to download missing packages. If it still does not download (firewall blocking?) then you may need

to manually install the missing NuGets.

Add reference to System.Transactions
VelocityDB now supports this type of distributed transactions. A transaction can now be shared between SQL Server and

VelocityDB (and other resources/database systems). To make this work, any client using VelocityDB sessions must add a

reference to System.Transactions (except for NET.CORE and UniversalWindows which do not support

System.Transactions).

Sample code using this type of distributed transaction is included in NUnit Tests. Here is part of it.

 [Test]
 public void GermanString()
 {
 UInt64 id = 0;
 using (SessionNoServer session = new SessionNoServer(s_systemDir))
 {
 using (var trans = new TransactionScope())
 {
 session.BeginUpdate();
 VelocityDbSchema.Person person = new VelocityDbSchema.Person();
 person.LastName = "Med vänliga hälsningar";

https://msdn.microsoft.com/en-us/library/system.transactions(v=vs.110).aspx

 id = session.Persist(person);
 trans.Complete();
 }
 }

GitHub
If you prefer not to use our installer and instead want to build our extensions, drivers, server and samples from the

source code as in our GitHub repository then you need to manually first install

1. Microsoft Sync Framework (used by our extensions project VelocityDBExtensions2)

2. LinqPad5 (used by our LinqPad driver)

Clone the repository: https://github.com/VelocityDB/VelocityDB.git

Selecting the correct VelocityDB Session Class
The most important class for users of VelocityDB is the Session class which contains the Transaction Control API, the

Persistence API, the Data Cache API and more. VelocityDB provides three session types and does not limit usage. Your

application can utilize all of them as necessary:

• ServerClientSession - Used for distributed databases or when clients are hosted remotely.

 // initial DatabaseLocation directory and hostname
using (ServerClientSession session = new ServerClientSession("c:\\Databases", "DbServer"))
{
 session.BeginRead();
 // your code here
 session.Commit();
}

• SessionNoServer - Client and data are on the same host (unless it is a web application)

using (SessionNoServer session = new SessionNoServer("c:\\Databases"))
{
 session.BeginRead();
 // your code here
 session.Commit();
}

SessionNoServerShared - Client and data are on the same host (unless it is a web application) with use of pages and

databases thread safe (other objects only partially) and by default VelocityDB adds some threading. One thread handles

all index updates and another thread handles object encoding and page writes. You can optionally turn of the page write

thread by a property setting in the session.

session.WriteToDiskInSeperateDatabaseThreads = false;, the index update thread can also be disabled (but must

be enabled if page write threads are) by setting session.AddToIndexInSeperateThread = false;

Having these worker threads active can dramatically improve update performance BUT at this time it may not due to the

overhead of the Monitor locks. However, more could be parallelized, but it requires complicated object level thread

locks. Eventually, we will probably merge in the worker thread functionality into SessionNoServer and eliminate

SessionNoServerShared.

using (SessionNoServerShared session = new SessionNoServerShared ("c:\\Databases"))
{
 session.BeginRead();
 // your code here
 session.Commit();
}

https://github.com/VelocityDB/VelocityDB
https://www.microsoft.com/en-us/download/details.aspx?id=23217
https://www.linqpad.net/Download.aspx

The session class ServerClientSession is appropriate if the application will distribute data and/or clients across

multiple hosts (where the clients are not just clients of a web site). Otherwise, SessionNoServer or

SessionNoServerShared are appropriate. Of the two, the best choice is dependent upon the architecture of the

application.

Additional benefits of using ServerClientSession

✓ Granularity of locking is page instead of database (file).

✓ Backup feature option

✓ Shared cache for all users (on server side)

✓ Deadlock detection (when pessimistic locking is used, with optimistic locking deadlocks don’t happen)

✓ Change event subscription and notification

Benefits of using SessionNoServer or SessionNoServerShared

✓ No server installation required

✓ More stable, less can go wrong

✓ Can perform better with local files.

Our video talking about database concurrency control may help you decide what session to use.

Use SessionNoServerShared when the application must share a client-side cache between multiple threads. This may

be the case for a web site that has limited RAM resources while also having a large amount of persistent data to

manage.

It is recommended that a session is reused for multiple transactions since that will provide some caching benefits and

also avoids some setup time, especially with ServerClientSession.

DO NOT pass objects between session instances. Once you read an object from a database, that object belongs to the

session used to read it. Do not attempt to read an object using one session and the update it using another session. This

will not work as expected and we may not detect it so it will fail silently.

Using database worker thread to speed up ingest/update of data
By default, starting in VelocityDB 4.6, each database will have a worker thread responsible for taking updated objects
and writing these to disk. This is currently only available when using SessionNoServerShared session class. An
application can turn this threading off by setting the session property
session.WriteToDiskInSeperateDatabaseThreads = false;. For now, we recommend using SessionNoServer over
SessionNoServerShared due a few remaining issues in SessionNoServerShared that may end up as exceptions being
thrown.

Concurrent access to database data
SessionNoServer and ServerClientSession are not thread safe so don’t use these with multi-threaded code. Be careful

not to declare database access code async as it introduces possible multi-threading. SessionNoServerShared is thread

safe but only at object, page and database access level. Complex objects such as BTreeSet may still not be fully thread

safe with update transactions. We recommend using a single SessionNoServerShared for all read only access and a

SessionPool session for update transactions. See Issues.aspx.cs as an example of how to use it.

Optimistic locking versus Pessimistic locking
By default VelocityDB uses optimistic locking. Pessimistic locking can be turned on by a session constructor parameter.

With optimistic locking, reads are always possible except for uncommitted new databases and multiple updaters are

https://en.wikipedia.org/wiki/Deadlock
http://www.velocitydb.com/Samples.aspx#concurrency
https://github.com/VelocityDB/VelocityDB/blob/master/VelocityWeb/Secure/Issues.aspx.cs

allowed but only the first writer will succeed, the other writers of the same page (ServerClientSession) or database

(SessionNoServer) will get an optimistic locking exception. Once you decide using optimistic/pessimistic concurrency

control, stick with your choice. Do not mix sessions using optimistic concurrency control with sessions using pessimistic

concurrency control. If your application often try to update the same database/page concurrently, you are better off

using pessimistic locking as it will wait for a lock to be released and then proceed to do the updates successfully in each

concurrent transaction unless a deadlock is detected.

SessionPool class
Use this class when you have frequent database requests coming in from multiple clients possibly simultaneously, i.e. a

web application serving multiple clients. With SessionPool, you will reuse a set of sessions. With reuse comes a cache of

databases, pages and objects. Having the cached data makes access to data faster compared to starting with a brand

new fresh session each time. Keep the number of sessions allocated for the pool small to reduce memory usage, we

think 3 sessions should be enough in most cases. If more than the set maximum sessions are requested from

SessionPool then a temporary new session will created and then disposed after usage so that memory usage is

reduced. It is important that your code frees the session back into the pool after each usage.

const int numberOfSessions = 5;
SessionPool pool = new SessionPool(numberOfSessions, () => new SessionNoServer(systemDir));
int sessionId = -1;
SessionBase session = null;
try
{
 session = pool.GetSession(out sessionId);
 session.BeginUpdate();
 for (int i = 0; i < 1000; i++)
 {
 Man man = new Man();
 session.Persist(man);
 }
 session.Commit();
}
catch (Exception e)
{
 if (session != null)
 session.Abort();
 Console.WriteLine(e.Message);
 throw e;
}
finally
{
 pool.FreeSession(sessionId, session);
}

Composite Object Identifier
All normal VelocityDB persistent objects have an associated composite object identifier. It is encoded as a UInt64 with

three composite parts; a database number (upper 32 bits), a page number and a slot number. The Id property returns

an objects encoded object identifier and the Oid property returns the decoded object identifier as the struct Oid. A

reference to a persistent object is persistently stored as an object identifier, it is normally a UInt64 but it can also be

using a short object identifier, a UInt32, when the reference is to another object within the same database. The decoded

short reference as a struct is OidShort. Use the special OidShort collection classes and tag object references with the

attribute [UseOidShort] as in:

[Serializable]
[UseOidShort]

https://en.wikipedia.org/wiki/Deadlock

internal class Recovery : OptimizedPersistable

and for a specific member:

[UseOidShort]
public VelocityDbListOidShort<FreeSpace> theArray;

DatabaseLocation
This is a directory on some host. The initial DatabaseLocation is created when you create your first persistent object.

You specify the directory when you create the session class. You can create additional database locations like:

using (ServerClientSession session = new ServerClientSession(systemDir, Dns.GetHostName()))
{
 session.BeginUpdate();
 DatabaseLocation otherLocation = new DatabaseLocation(Dns.GetHostName(), location2Dir,
locationStartDbNum, locationEndDbNum, session, true, 0);
 otherLocation = session.NewLocation(otherLocation);
 session.Commit();
}

You need to commit the initial DatabaseLocation before other sessions (clients) can access it.

Moving/Copying Databases in a DatabaseLocation to a different Host/Directory
If you only have a single directory for your set of connected databases, you may wonder why we need to update

anything. The reason is that some usage scenarios may use one hundred or more database locations in a single set of

databases. That is why we maintain a catalog of database locations in 2.odb.

First move your database files to desired host and directory, then do like:
using (var session = new SessionNoServer("CompanyBootLocation"))

{ // NO longer required starting in version 10.1, we do this automatically when we detect a new default/bootup
location in an update transaction
 session.RelocateDefaultDatabaseLocation(); // update default database location without first starting
a transaction
}

// other locations you will have to update yourself
using (var session = new SessionNoServer("CompanyBootLocation"))
{
 session.BeginUpdate();
 session.RelocateDatabaseLocationFor(session.DatabaseNumberOf(typeof(InsuranceCompany)),
SessionBase.LocalHost, "InsuranceCompanies");
 session.Commit();
}

Page Compression
Page compression is now by default turned off. You can turn it on by setting the constructor parameter when you create

a DatabaseLocation.

The initial/default DatabaseLocation is created when you run your first update transaction with a specified directory that
does not already contain databases 0, 1, and 2 (0.odb, 1.odb, and 2.odb).
If you want page compression turned on for this DatabaseLocation, set SessionBase.DefaultCompressPages to true
first. This static variable is also used when you create your own DatabaseLocation and not specifying the compressPages
constructor parameter.

Encrypt Page data
By default page data is not encrypted. You can enable Des encryption when you create a DatabaseLocation. Our

sample application DesEncrypted shows how to do it. You can also use DatabaseManager to make it happen. Des

encryption requires an 8 character (8 bytes) key. Once you start using Des encryption, this key is stored in a file within

the active Users Documents folder. Filename is based on Id of the DatabaseLocation.

This file needs to be copied to all Users Documents folder for access to such encrypted pages. DO NOT change the key

after you have persisted pages with Des encryption.

We can provide other encryption mechanisms on request and we can also rework API such that custom encryption

methods can be used.

Databases
A database corresponds to a file within a DatabaseLocation. The file name of a Database is <database number>.odb.

When you create your first persistent data, three system databases are created:

• 0.odb

Contains a log of update transactions and the recovery mechanism data.

• 1.odb

Contains the schema objects

• 2.odb

Contains the DatabaseLocation objects.

These system databases must be committed by a session before other sessions can use them. This is true for any new

database; a database must be committed before other sessions can access it.

A new uncommitted Database is named <database number>.new and an uncommitted deleted Database is named

<database number>.del.

http://www.velocitydb.com/Samples.aspx#des

A Database can be created explicitly using session API or implicitly by placing a new persistent object with database part

of the object identifier corresponding to an unallocated database number.

Compacting Databases
Database pages uses versioning so that a page can be updated in one transaction and prior committed state of that page

can be read by other transactions. After updating pages there may be available space within a Database file. This is

because when a Database page is updated, it is not written back to the same location in the file, a new version of the

page is created somewhere else in the file. A new version of a page may be smaller/larger than the prior version. Space

for a new page version is allocated from a best fit free area. If no free area large enough is available, then the database

file is extended and the page is allocated at the end of the file. This versioning can create up to two versions of each

page in a database. By calling SessionBase.Compact() this extra database space is reclaimed and pages are physically

ordered in page number order. This may improve performance. ServerClientSession currently does not implement

Compact() so for now use SessionNoServer when calling Compact(). Call Compact() outside the scope of any

transaction.

Notice! Backup your database files before attempting a Compact() as it is a potentially very large update to your

database structures. Avoid attempting to make other updates to the databases while running Compact().

VelocityDB license database
Download your VelocityDB license database file from http://www.velocitydb.com/Secure/License.aspx

The license database file is named 4.odb. Copy this file to all database directories used for the system databases 1.odb …

9.odb. This is the directory you specify when creating the session instance. Some of the sample applications provided

with the download will fail without a license database. If a license database is missing when a license check is happening,

VelocityDB will copy a license database from your “Downloads” directory if such a file exists and use it for the license

check. A license check does not require an active internet connection. VelocityDB never tries to talk to any other host as

part of the license check.

Replication
Databases in the initial DatabaseLocation that starts with database id 0 can be replicated to multiple directories on

multiple hosts. This enables high availability, if one replica isn’t available then another available one is used if available.

Under normal operation, all changes are applied to all replicas. If a replica is found to be out of sync, it is refreshed from

one of the replicas that is up to date. Using replication is optional and is activated by using a special version of the

ServerClientSession constructor as in:

alternateSystemBoot = new List<ReplicaInfo> { new ReplicaInfo { Path = "Replica1" }, new ReplicaInfo {
Path = "Replica2" }, new ReplicaInfo { Path = "Replica3", Host = s_systemHost2 } };
using (var session = new ServerClientSession(alternateSystemBoot))

Replicas can be added/removed by changing the List<ReplicaInfo> constructor parameter.

As of February 2019, this is a new feature with some limitations, we will incrementally update the replication code with

automatic fault tolerance until it’s perfected, handling all cases and is rock solid. Please help us with ideas and test cases

for how to get there.

Storing Databases in the Cloud

Microsoft Azure

It is very easy to store databases in the cloud with replication, backup and safe access using Microsoft Azure File storage.

Microsoft provide free trials of Azure. To store databases on Azure servers, all you need to do is to use a file share.

http://www.velocitydb.com/Secure/License.aspx

See description here.

Once you have mounted your Azure directory as a local drive such as z:, you can start using it for reading and updating

Azure hosted storage. We also started work on an AzureSession class based on SessionNoServer as a direct way to

access Azure hosted databases. The code for this is in our download as part of VelocityDbExtensions project file name

AzureSession.cs. It currently isn’t fully working due to challenges with Azure Stream that only can be read only or

update only, required explicit Flush() and file resizing. In any case the shared drive solution is more transparent and have

less restriction so use it for now.

Example: net use z: \\samples.file.core.windows.net\logs /u:samples<storage-account-key>

ServiceFabric Remoting

Microsoft now supports a micro service technology they named “ServiceFabric”. It is a very cool option that lets you

deploy services on your local computer, an own server or in the cloud using Microsoft Azure. It lets you communicate in

many ways between client and server but the coolest/easiest way is by using ServiceFabric Remoting. All you do is

define and interface and then you implement the interface in the service fabric service. Clients just instantiate the

interface by a proxy (one line statement) and then the service becomes available as if it was API within the client

process. Very nice! On the server (service) side you do not need to use the VelocityDBServer, you can use the embedded

client sessions instead (SessionNoServer and/or SessionNoServerShared).

Accessing remote databases without using VelocityDBServer
If remote server is within a Windows network, UNC path to databases can be used. Easiest way to do it is by setting

SessionBase.BaseDatabasePath, i.e.

 static readonly string s_systemDir = "UncPath"; // appended to SessionBase.BaseDatabasePath
 static int Main(string[] args)
 {
 SessionBase.BaseDatabasePath = @"\\FindPriceBuy\BenchmarkDatabases";
 for (int i = 0; i < 5; i++)
 using (var session = new SessionNoServer(s_systemDir))
 {
 Console.WriteLine($"Running with databases in directory: {session.SystemDirectory}");

Pages
A VelocityDB page can contains one or more persistent objects. The size of a Page can vary dynamically. A page is stored

within a Database file. Each Page has a PageInfo header that contains information about a page. A Page can optionally

be encrypted and/or compressed.

Transactions
All interaction with databases and persistent object require an active transaction. With VelocityDB we provide two kinds

of transactions; update and read only. With an update transaction, you are permitted to update and add persistent data.

With a read only transaction, an exception will be thrown by VelocityDB if you try to update persistent data. Only one

concurrent transaction per session is permitted. A transaction is started and committed by API on the session classes.

An application may examine in memory persistent object without being in a transaction but an exception will be thrown

if any persistent operation is requested like reading a page from a database.

public virtual void BeginRead(bool doRecoveryCheck = true)
public virtual void BeginUpdate()
public virtual void Commit(bool doRecoveryCheck = true)
public virtual void Abort()

https://azure.microsoft.com/en-us/documentation/articles/storage-dotnet-how-to-use-files/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-services-communication-remoting/
https://www.lifewire.com/unc-universal-naming-convention-818230

Try Catch blocks around all transactions
It is particularly important to add this around update transactions. If you don’t add it around an update transaction then

you could end up corrupting your data. You should always abort the active transaction if you get an exception.

static int Main(string[] args)
{
 using (SessionNoServer session = new SessionNoServer(systemDir))
 {
 Console.WriteLine("Running with databases in directory: " + session.SystemDirectory);
 try
 {
 session.BeginUpdate();
 Company company = new Company();
 company.Name = "MyCompany";
 session.Persist(company);
 Employee employee1 = new Employee();
 employee1.Employer = company;
 employee1.FirstName = "John";
 employee1.LastName = "Walter";
 session.Persist(employee1);
 session.Commit();
 }
 catch (Exception ex)
 {
 Trace.WriteLine(ex.Message);
 session.Abort();
 }
 }
 Retrieve();
 return 0;
}

Why we need transaction for reads
With optimistic locking option (the default) there is no locking reason for a transaction when only reading objects. If the

other locking model is used, pessimistic locking, then read only transactions are needed because they define the scope

of read locks. A session constructor parameter is used for requesting optimistic or pessimistic locking model. Another

reason we need read only transaction is cache management and validation. Each Database, Page and Object is cached

within a session instance. Each cached Database is validated in the beginning of a transaction, making sure cached

version is up to date. If reads are frequent among multiple threads, it may make sense to use a shared session for the

reads, SessionNoServerShared, and maintain an infinitely long open optimistic locking read transaction. Call

ForceDatabaseCacheValidation()frequently when there is possible other active database clients so that your cache

stays up to date. Alternatively trigger validation of only selected databases by setting the Database property

CachedVerified to false.

Enabling recovery check for read transactions
By default when a BeginRead() transaction is started, we do not check for the very unlikely event that our previous

update transaction was not completely persisted so that we need to revert to prior state. By skipping this check in read

transactions we save time. To enable the check start transaction with BeginRead(true) instead.

Event subscription and notification
With use of ServerClientSession you can subscribe to object add/modification events. The EventSubscriber sample, part

of your VelocityDb.sln, in our download shows how it can be used.

A session can subscribe to changes made in other ServerClientSession sessions in any process on any host.

https://github.com/VelocityDB/VelocityDB/tree/master/EventSubscriber

An event subscription is started like

session.SubscribeToChanges(typeof(Person));

subscribes to any updates involving Person objects.

session.SubscribeToChanges(typeof(Woman), "OlderThan50");

subscribes to any updates involving Woman objects where property OlderThan50 evaluates to true.

Events are received at the start of a transaction by using special begin transaction API

List<Oid> changes = session.BeginReadWithEvents();

or

List<Oid> changes = session.BeginUpdateWithEvents();

How to enable persistent objects of some class
There are three major choices for enabling persistence.

1. Make your data model class a subclass of OptimizedPersistable
2. Implement the interface IOptimizedPersistable. See the sample class PersistenceByInterfaceSnake as a

template for how to implement the required interface API.
3. Implement the interface ISerializable

These three ways of enabling persistence can be mixed, some classes may implement the interface and others may be

subclasses of OptimizedPersistable.

Objects of ValueType and arrays are embedded within a parent persistent object.

In addition, almost any type of object, except Delegate and Pointer instances, can be made persistent but this way is not

very efficient due to requiring use of a fairly inefficient ConditionalWeakTable internally by VelocityDB due to such

objects not maintaining an object identifier as a field.

OptimizedPersistable implements IOptimizedPersistable.

Implementing ISerializable
This way is NOT recommended as it slows down serialization and deserialization. This is also true for ISerializable classes

that you may use from some library. Be prepared, it will be slow. HashSet is about 60x slower to deserialize vs

List/BTreeSet due to it being ISerializable.

In some cases regular serialization/deserialization is not desired. Good examples of that are the date classes in

NodaTime. These object de-serialize to use a shared CalendarSystem instance. (Very clever!)

If your class implements both ISerializable and IDeserializationCallback then VelocityDB will call your callback function

OnDeserialization.

Sample simple use of ISerializable (part of NUnit tests included with our product download & on GitHub)

public class TestISerializable : ISerializable
{
 public int m_intOne;
 public string m_stringOne;
 public string m_notSerialized;

https://msdn.microsoft.com/en-us/library/system.runtime.serialization.iserializable(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable?view=net-5.0
http://nodatime.org/
https://github.com/nodatime/nodatime/blob/master/src/NodaTime/CalendarSystem.cs

 public TestISerializable()
 {
 m_stringOne = "one";
 m_intOne = 1;
 m_notSerialized = "not";
 }

 private TestISerializable(SerializationInfo info, StreamingContext context)
 {
 m_intOne = info.GetInt32("m_intOne");
 m_stringOne = info.GetString("m_stringOne");
 m_notSerialized = "transient";
 }

 void ISerializable.GetObjectData(SerializationInfo info, StreamingContext context)
 {
 info.AddValue("m_intOne", m_intOne);
 info.AddValue("m_stringOne", m_stringOne);
 }
}

Collections using OptimizedPersistable.Equals and GetHashCode
Note that OptimizedPersistable overrides Equals and GetHashCode

public override bool Equals(Object obj)
{
 OptimizedPersistable otherPersistentObject = obj as OptimizedPersistable;
 if (otherPersistentObject != null)
 {
 if (otherPersistentObject.IsPersistent && IsPersistent)
 return m_id.Equals(otherPersistentObject.m_id);
 return base.Equals(obj);
 }
 else
 return false;
}

public override int GetHashCode()
{
 if (m_id == 0)
 return base.GetHashCode();
 return (int)Oid.DatabaseNumber(Id) << 24 + (int)Id;
}

As you can see the behavior is different when object becomes persistent. If you use these functions for objects that you

want to use persistently then it is VERY important that such objects are persisted BEFORE being used with Equals and/or

GetHashCode or else you will end up with a corrupt HashSet or whatever way you triggered use of these methods.

DateTime
It is good practice to persist all DateTime structures using Coordinated Universal Time (UTC) DateTimeKind. If you store

DateTime using DateTimeKind.Local, it is your responsibility to also store/track TimezoneInfo, it is not stored with

DateTime.

Database Schema
VelocityDB maintains a special database, 1.odb, for all database schema. Objects in this database of type

VelocityDbType, TypeVersion and DataMember describes the types and fields your application persists. It is important

that once you persist an instance of a class that this class remains within your application anytime you access your

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/shx7s921(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.timezoneinfo(v=vs.110).aspx

databases. Otherwise, database schema will not be able to resolve schema class with a .NET type. If you accidently do

this, it is possible to delete such an entry after you make sure there isn’t any instances of it stored in any database.

Contact us for assistance if this is required. You can also add an empty (stub) class of the missing type so that it resolves

to something at schema load time.

Register all types that you plan on persisting
It is not mandatory, but by doing so you ensure that schema is created one way no matter in what order you persist

objects and you avoid potential lock conflicts with the schema database (1.odb). For VelocityGraph, we do this the first

time a Graph is persisted as:

public override UInt64 Persist(Placement place, SessionBase session, bool persistRefs = true,
 bool disableFlush = false, Queue<IOptimizedPersistable> toPersist = null)
{
 if (IsPersistent)
 return Id;
 session.RegisterClass(typeof(Graph));
 session.RegisterClass(typeof(BTreeMap<EdgeTypeId, EdgeTypeId>));
 session.RegisterClass(typeof(PropertyType));
 session.RegisterClass(typeof(VertexType));
 session.RegisterClass(typeof(VelocityDbList<VertexType>));
 session.RegisterClass(typeof(EdgeType));
 session.RegisterClass(typeof(UnrestrictedEdge));
 session.RegisterClass(typeof(VelocityDbList<Range<ElementId>>));
 session.RegisterClass(typeof(VelocityDbList<EdgeType>));
 session.RegisterClass(typeof(Range<VertexId>));
 session.RegisterClass(typeof(BTreeSet<Range<VertexId>>));
 session.RegisterClass(typeof(BTreeSet<EdgeType>));
 session.RegisterClass(typeof(BTreeSet<EdgeIdVertexId>));
 session.RegisterClass(typeof(BTreeMap<EdgeId, ulong>));
 session.RegisterClass(typeof(BTreeMap<EdgeId, UnrestrictedEdge>));
 session.RegisterClass(typeof(BTreeMap<string, PropertyType>));
 session.RegisterClass(typeof(BTreeMap<string, EdgeType>));
 session.RegisterClass(typeof(BTreeMap<string, VertexType>));
 session.RegisterClass(typeof(BTreeMap<VertexId, BTreeSet<EdgeIdVertexId>>));
 session.RegisterClass(typeof(BTreeMap<VertexType, BTreeMap<VertexId, BTreeSet<EdgeIdVertexId>>>));
 session.RegisterClass(typeof(BTreeMap<EdgeType, BTreeMap<VertexType, BTreeMap<VertexId,
BTreeSet<EdgeIdVertexId>>>>));
 session.RegisterClass(typeof(BTreeMap<string, BTreeSet<ElementId>>));
 session.RegisterClass(typeof(BTreeMap<int, BTreeSet<ElementId>>));
 session.RegisterClass(typeof(BTreeMap<Int64, BTreeSet<ElementId>>));
 session.RegisterClass(typeof(PropertyTypeT<bool>));
 session.RegisterClass(typeof(PropertyTypeT<int>));
 session.RegisterClass(typeof(PropertyTypeT<long>));
 session.RegisterClass(typeof(PropertyTypeT<double>));
 session.RegisterClass(typeof(PropertyTypeT<DateTime>));
 session.RegisterClass(typeof(PropertyTypeT<string>));
 session.RegisterClass(typeof(PropertyTypeT<IComparable>));
 session.RegisterClass(typeof(AutoPlacement));
 return base.Persist(place, session, persistRefs, disableFlush, toPersist);
}

If your application schema is using indexes

The following is from the test aaa_IndexRegisterClass in project NUnitTests and class is IndexingTest

public class InsuranceCompany : OptimizedPersistable
{
 [Index]
 [UniqueConstraint]
 [OnePerDatabase]
 string name;
 string phoneNumber;

 public InsuranceCompany(string name, string phoneNumber)

 {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

 [FieldAccessor("name")]
 public string Name
 {
 get
 {
 return name;
 }
 }
}

[UniqueConstraint]
[Index("_registrationState,_registrationPlate")]

public class Car : Vehicle

{

 string _registrationState;
 string _registrationPlate;
 [Index]
 InsuranceCompany _insuranceCompany;
 string _insurancePolicy;

 public Car(string color, int maxPassengers, int fuelCapacity, double litresPer100Kilometers, DateTime modelYear,
 string brandName, string modelName, int maxSpeed, int odometer, string registrationState, string registrationPlate,
 InsuranceCompany insuranceCompany, string insurancePolicy):base(modelYear,color, maxPassengers, fuelCapacity, litresPer100Kilometers,
brandName, modelName, maxSpeed, odometer)
 {
 _registrationState = registrationState;
 _registrationPlate = registrationPlate;
 _insuranceCompany = insuranceCompany;
 _insurancePolicy = insurancePolicy;
 }
 [FieldAccessor("_registrationState")]
 public string RegistrationState => _registrationState;
 [FieldAccessor("_registrationPlate")]
 public string RegistrationPlate => _registrationPlate;
}

You should register a few addional index related classes:

session.RegisterClass(typeof(IndexDescriptor));
session.RegisterClass(typeof(BTreeSetOidShort<IndexDescriptor>));
session.RegisterClass(typeof(CompareByField<IndexDescriptor>));
session.RegisterClass(typeof(Indexes));

session.RegisterClass(typeof(VelocityDbList<OptimizedPersistable>));

For each of your classes that uses indexes (replace with your class name)

session.RegisterClass(typeof(CompareByFieldIndex<InsuranceCompany>));
session.RegisterClass(typeof(BTreeSetOidShort<InsuranceCompany>));// short due to [OnePerDatabase] on this Index
// normally it would be instead
session.RegisterClass(typeof(VelocityDb.Collection.Comparer.CompareByFieldIndex<Car>));
session.RegisterClass(typeof(BTreeSet<Car>));

// If you are using Reference
session.RegisterClass(typeof(Reference));
session.RegisterClass(typeof(BTreeSet<Reference>));

If base classes have indexes (like Vehicle in this example), you need to do it for such classes as well.

Fixed size class instances and limiting string size
Objects of a class that has only fixed size fields can be stored without specifying an object size. This saves four bytes per

object and such objects can in some cases be looked up by byte offset. You can make a string field fixed size by using the

StringLength attribute as in

 public class TickOptimized : OptimizedPersistable
 {
 [StringLength(8)]

 string m_symbol;
 DateTime m_timestamp;
 double m_bid;

In this case m_symbol will be stored using 8 bytes. We interpret length as number of bytes, not number of characters.

You can calculate how many bytes a certain string uses in persisted state with

SessionBase.TextEncoding.GetByteCount(string str);

Adding or removing field(s) from a class with existing objects in a database
After making changes to a class, in an update transaction call session.UpdateClass(typeof(UpdatedClass)); as done

in the sample application UpdateClass. This updates the schema to reflect the changes to your class, a new version of

the class is created as a new instance of TypeVersion. Objects associated with prior versions of this type are migrated to

the updated class in memory when read from a database. To make such objects permanently be shaped as the latest

version of your class TypeVersion, you need to update the object with a call to UpdateTypeVersion().If you fail to call

UpdateClass, it can lead to exceptions and failures to read/write objects of the Type

Changing a field type without losing already persisted data

We wanted to make a change to our BTree/BTreeMap collection to reduce memory usage and improve performance. To

do this while still preserving already persisted data of these types. This is how we did it.

First change class definitions by setting prior version usage field as [NonSerialized] and add new version of field as in:

[NonSerialized]
internal VelocityDbList<BTreeLeafBase<Key, Value>> nodeList;
internal WeakReferenceListBase<BTreeLeafBase<Key, Value>> _nodeList;

When we read an object of this type as it was before this change, nodeList will be set and _nodeList will be null so to

make the switch to new field type add to this class code like:

public override void InitializeAfterRead(SessionBase session)
{
 base.InitializeAfterRead(session);
 if (nodeList != null)
 {
 _nodeList = new WeakReferenceList<BTreeLeafBase<Key, Value>>(nodeList.Count, Session);
 foreach (var e in nodeList)
 _nodeList.Add(e);
 if (session.InUpdateTransaction)
 {
 session.UpdateClass(GetType());
 UpdateTypeVersion();
 nodeList.Unpersist(session);
 }
 }
}

After updating all your persisted objects to the new field type, you can remove the [NonSerialized] field and the

InitializeAfterRead override.

Renaming a persisted class or moving it to a different namespace
The UpdateClass sample shows how to do this.

Example usage

https://msdn.microsoft.com/en-us/library/w3739zdy(v=vs.110).aspx
https://velocitydb.com/Samples.aspx#UpdateClass

session.ReplacePersistedType(typeof(VelocityDbSchema.Samples.UpdateClass.UpdatedClass),
typeof(UpdateClass.UpdatedClass));

and back again using alternate API

session.ReplacePersistedType(typeof(UpdateClass.UpdatedClass).AssemblyQualifiedName,

typeof(VelocityDbSchema.Samples.UpdateClass.UpdatedClass));

NOTE: The type you are replacing with must not already exist in the database schema. Make sure both old type and

replacement type contains the exact same fields.

VelocityGraph
Some of the content in this guide does not apply to users that only use VelocityGraph with simple property values such

as numbers and strings. As a strict VelocityGraph user you do not need to worry about calling Update() before updating

an object and schema is static, only what the base VelocityGraph uses.

Visualizing a VelocityGraph
Our DatabaseManager now includes a VelocityGraph mode. Right click to bring up menu. In this mode you see objects

as you work with them in VelocityGraph, the other mode (default) shows how objects are stored.

You can export a Graph to GraphJson and then use Alchemy.js to visualize the graph.

I.e. the exported graph of the QuickStart VelocityGraph can look like

https://github.com/GraphAlchemist/GraphJSON
http://graphalchemist.github.io/Alchemy/#/

Other alternatives include using Northwoods Software. The following graph/diagram was created with very simple C#

code from a VelocityGraph.

http://www.nwoods.com/

Persistent placement of objects
The placement (location) of persistent objects affects performance and locking. It is therefore important to make

decisions about where to place an object when making it persistent. Once an object has been persisted, it remains in the

same location for its persistent life time. You can decide how many objects you want on a single page. For slightly

improved storage, require that a page only may contain objects of a specific type. Also fixed size objects (ones with no

contained variable size arrays) can further improve object store efficiency. Several ways of controlling the placement

when persisting object are provided. First on IOptimizedPersistable the following helps guide the placement:

UInt16 ObjectsPerPage
{
 get;
}

Best way to persist an object
The recommended way of persisting objects is using the SessionBase api:

public UInt64 Persist(object obj)

When this api is used, each type is stored in its own database. For best performance avoid explicitly persisting objects
unless: an object is a root object (not referenced by other persisted objects), includes an [AutoIncrement] field (unless
you don’t care what number gets assigned), used in a VelocityDBWeakReference or is indexed and you can’t wait for the

index update to happen at transaction commit. Objects not persisted explicitly will be made persistent automatically by
reachability from a persisted object.
Add the attribute [NonSerialized] for each class field you don’t want to be persisted.

It is recommended that you make the following override in your OptimizedPersistable subclass for better
performance:
 public override bool AllowOtherTypesOnSamePage
 {
 get
 {
 return false;
 }
 }

We may make this default but it could break existing code so it is not a trivial change.

Customizing object placement (most of you can skip this part)
In addition the IOptimizedPersistable interface contains API intended for customizing how fields of an object being
persisted are to be persisted (including where to place).

UInt64 Persist(Placement place, SessionBase session, bool persistRefs = false, bool disableFlush =
false);

UInt64 Persist(SessionBase session, IOptimizedPersistable placeHint, bool persistRefs = false, bool
disableFlush = false);

for (int i = 0; i < numberOfPersons; i++)

{

 person = new Person();

 person.Persist(session, person);

}

for (int i = 0; i < numberOfPersons; i++)

{

 person = new Person();

 if (priorPerson == null)

 priorPerson = person;

 person.Persist(session, priorPerson); // use prior person as object to persist

near

 priorPerson = person;

}

The second way of controlling the placement while persisting an object is by using persistent or
transient instances of the Placement class.

public Placement(UInt32 db, UInt16 page = 1, UInt16 slot = 1, UInt16 objectsPerPage = 10000, UInt16
pagesPerDatabase = 10000, bool persistRefs = false, bool tryOtherDatabaseIfLockConflict = true, UInt32
maxNumberOfDatabases = UInt32.MaxValue, bool allowOtherTypesOnSamePage = true, bool flushFullPages =
true)

public Placement(SessionBase session, IOptimizedPersistable placementProviderObject,
IOptimizedPersistable objectToPlace, bool persistRefs = false, UInt32 maxNumberOfDatabases =
UInt32.MaxValue, bool flushFullPages = true)

There is also additional API on Placement for fine tuning the placement. An instance of Placement is used as
parameter to the IOptimizedPersistable Persist API mentioned above.

Sometimes it an advantage to put all related objects in a single database because then 32bit, OidShort, object
references can be used instead of full 64 bit, Oid, object references. A short object reference contains only a page and
slot part (16 bit each). Such references use less storage space and if only short references are used within a database,
such a database can easily be cloned since it’s database number isn’t hard coded anywhere within the database. Short
references are not automatically used when you place objects this way. The application must explicitly request it in the
class definition by using the attribute [UseOidShort]. There are also special short references versions of the provided
BTree collections. The application needs to use those instead of the long reference BTree collections when you want all
objects within a database to use short references.

How to optimally place/persist objects is application dependent. The sample programs provided try to illustrate some of
many use cases for object placement.

Controlling placement of objects persisted by reachability

Be default when you persist some object using the recommended method, all objects reachable from this object are also

persisted by the same method. You can override this behavior for persisting reachable objects by overriding the

property IOptimizedPersistable.PlacementDatabaseNumber to return something different than

Placement.DefaultPlacementDatabaseNumber.

You can further control the persist of objects by overriding the Persist function as in:

 public override UInt64 Persist(Placement place, SessionBase session, bool persistRefs = true, bool
disableFlush = false, Queue<IOptimizedPersistable> toPersist = null)
 {
 base.Persist(place, session, false, disableFlush, toPersist);
 keyArray.Persist(place, session, true, disableFlush, toPersist);
 return Id;
 }

Looking up objects
The most efficient way is to have one or a few root objects that you look up by the object identifier as in:

ImdbRoot imdbRoot = (ImdbRoot)session.Open(session.DatabaseNumberOf(typeof(ImdbRoot)), 2, 1, false);

When you open an object this way, all objects referenced by the object is also connected to the object so then to reach
related objects all you need to do is navigate to related objects such as in:

imdbRoot.ActingByNameSet
BTreeSet<Word> wordSet = indexRoot.lexicon.wordSet;

Another way to lookup objects is by using a LINQ query such as:

var result = (from ComputerFileData computerFileData in session.AllObjects<ComputerFileData>()
 where computerFileData.FileID == 500000
 select computerFileData).First();

or you can accomplish the same lookup without using LINQ as:

 var computerFileDataEnum = session.AllObjects<ComputerFileData>();
 foreach (ComputerFileData computerFileData in computerFileDataEnum)
 {
 if (computerFileData.FileID == 500000)
 break; // found it
 }
The third way is by looking up from a collection (usually a BTree) as in:

doc.WordHit.TryGetValue(word, out wordHit) or via an index lookup.

DO NOT reference persistent data using static variables
It is not OK to have variables like

static VertexType movieType;
static PropertyType movieTitleType;
static PropertyType movieYearType;

Updating persistent objects
VelocityDB need to be notified when you want a change to an object to be persisted. The safest way to do this, is to

define a property for every field your application data objects have, such as:

[FieldAccessor("m_bestFriend ")]
public Person BestFriend
{
 get
 {
 Session?.LoadFields();// Loads all fields of an object if they are not already loaded.
 return m_bestFriend;
 }
 set
 {
 Update(); // IMPORTANT, call Update() before updating object
 m_bestFriend = value;
 }
}

If updating a field that is NOT indexed you can avoid the index update cycle by calling the object update function on

SessionBase instead of OptimizedPersistable Update() as in

public string StreetAddress
{
 get
 {
 return m_streetAddress;
 }
 set
 {
 UpdateNonIndexField();
 m_streetAddress = value;
 }
}

Note - Do not use any VelocityDB API between Update() and the field update or a VelocityDB API as part of part of the

field update otherwise the update may not be persisted as this can cause the object page to be flushed.

VelocityDB collection classes like VelocityDbList<T>, BTreeSet<Key> and BTreeMap<Key, Value> calls update

automatically internally so you don’t need and should not call Update() when modifying such collections.

When updating objects that are not implementing IOptimizedPersistable, call session.UpdateObject.

BindingList<MyItem> is such a case. Exception are: List<>, arrays and ValueType objects when embedded in an object

that implements IOptimizedPersistable. For such lists call Update() on the object embedding the list.

public class MyContainer : OptimizedPersistable
{
 private BindingList<MyItem> m_items;
 public BindingList<MyItem> Items {
 get { return m_items; }
 }

 public MyContainer()
 {
 m_items = new BindingList<MyItem>();
 }

 public bool UpdateBindingList(SessionBase session)
 {
 return session.UpdateObject(m_items);
 }
}

Deleting (unpersisting) persistent objects
Use OptimizedPersistable.Unpersist or Page.UnpersistObject or SessionBase.DeleteObject. You can
override the default implementation of public virtual void Unpersist(SessionBase session, bool

disableFlush = true), i.e.

 public override void Unpersist(SessionBase session, bool disableFlush = true)
 {
 if (id == 0)
 return;
 if (comparisonByteArrayId != 0)
 {
 comparisonBytesTransient = (BTreeByteArray)session.Open(comparisonByteArrayId);
 comparisonBytesTransient.Unpersist(session, disableFlush);
 comparisonByteArrayId = 0;
 }
 nodeList.Unpersist(session, disableFlush);
 base.Unpersist(session, disableFlush);
 }

Referential integrity
When removing an object from a database, it is important that references to this object also are removed. Otherwise

such references may end up referencing some other object or become a null reference.

It is recommended that you maintain two way relation (bidirectional) as much as possible because that makes it easier

to cleanup references and also to diagnose dangling references when they occur.

Interface IReferenceTracked and class ReferenceTracked was added as an aid to maintain referential integrity. A

simple sample project named Relations shows how this API can be used.

Collection Classes

List<T> vs VelocityDbList<T>
With VelocityDBList, each list gets an Id, with List not. You can share VelocityDbList between multiple objects, not

List.

Sample3 uses List, Sample4 uses VelocityDbList. See difference in DatabaseManager below. Sample4 has a database

20 containing VelocityDbList objects.

Avoid using Dictionary, HashSet and any other ISerializable classes
Serialization and deserialization are highly efficient with VelocityDB but when a class implements ISerializable that
optimization is lost, and we must use the custom code for serialization and deserialization the type provides as methods.

For Dictionary that code is:

protected Dictionary(SerializationInfo info, StreamingContext context) {
 //We can't do anything with the keys and values until the entire graph has been deserialized
 //and we have a resonable estimate that GetHashCode is not going to fail. For the time being,
 //we'll just cache this. The graph is not valid until OnDeserialization has been called.

HashHelpers.SerializationInfoTable.Add(this, info);
}

[System.Security.SecurityCritical] // auto-generated_required
public virtual void GetObjectData(SerializationInfo info, StreamingContext context) {

https://referencesource.microsoft.com/#mscorlib/system/collections/generic/dictionary.cs,ae5e648fd1d57140
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#4ade46c59f4e07b4
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/streamingcontext.cs.html#b8ef3c3075d2cf28
https://referencesource.microsoft.com/mscorlib/system/collections/hashtable.cs.html#de3ba4873d4ad06a
https://referencesource.microsoft.com/mscorlib/system/collections/hashtable.cs.html#b2cc3debc350ff4f
https://referencesource.microsoft.com/mscorlib/system/runtime/compilerservices/ConditionalWeakTable.cs.html#81e96afb65da57f3
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#d3599058f8d79be0
https://referencesource.microsoft.com/mscorlib/system/security/attributes.cs.html#29a3d687a50338b1
https://referencesource.microsoft.com/mscorlib/R/2cd38b2ea70e2202.html
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#4ade46c59f4e07b4
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/streamingcontext.cs.html#b8ef3c3075d2cf28

if (info==null) {
 ThrowHelper.ThrowArgumentNullException(ExceptionArgument.info);
}
info.AddValue(VersionName, version);

#if FEATURE_RANDOMIZED_STRING_HASHING
info.AddValue(ComparerName, HashHelpers.GetEqualityComparerForSerialization(comparer), typeof(IEqualityComparer<TKey>));
#else
info.AddValue(ComparerName, comparer, typeof(IEqualityComparer<TKey>));
#endif
info.AddValue(HashSizeName, buckets == null ? 0 : buckets.Length); //This is the length of the bucket array.
if(buckets != null) {
 KeyValuePair<TKey, TValue>[] array = new KeyValuePair<TKey, TValue>[Count];
 CopyTo(array, 0);
 info.AddValue(KeyValuePairsName, array, typeof(KeyValuePair<TKey, TValue>[]));
 }
}

This also makes the objects use up more space as persistent. Instead of persisting Dictionary use VelocityDB collection
BTreeMap and instead of HashSet use BTreeSet.

Using the provided BTree collections
Just about all object oriented applications need to use collections. VelocityDB provides BTree collections which are
similar to BTree’s of the variety B*. A BTree is a collection where the added objects are sorted. An application can define
the sort order by defining a subclass of VelocityDbComparer<Key> or by using the class CompareByField<Key>, a
collection may also have a null comparator in which case the objects are ordered by the object identifier or by the
ValueType ordering as defined by the objects public override int CompareTo(object obj) implementation. The
BTree comes in a few varieties, a key only version and a key value version. They also have a long object Id (db-page-slot)
version and a short Id (page-slot) version. A BTree can be used with comparisonByteArray data which is used to cache
object key data within the BTree nodes so that when a binary search takes place we can avoid opening objects to
compare. When you use the predefined class CompareByField<Key> it is easy to add comparisonByteArray data to the
BTree nodes, you just specify how many bytes per object it should be and whether the cached node byte contains the
entire data being compared when deciding if one object is less, equal or greater compared to another. If you customize
building your own comparator, managing the comparisonByteArray becomes a little trickier; on the compare class you
need to define SetComparisonArrayFromObject as in:

public override void SetComparisonArrayFromObject(Word key, byte[] comparisonArray, bool oidShort)
{
 Int32 hashCode = key.aWord.GetHashCode();
 Buffer.BlockCopy(BitConverter.GetBytes(IPAddress.HostToNetworkOrder(hashCode)), 0, comparisonArray,
0, comparisonArray.Length);
}

In this case we are sorting by the hash code of a string, the corresponding compare function in this case looks like:

public override int Compare(Word a, Word b)
{
 UInt32 aHash = (UInt32) a.aWord.GetHashCode();
 UInt32 bHash = (UInt32) b.aWord.GetHashCode();
 int value = aHash.CompareTo(bHash);
 if (value != 0)
 return value;
 return a.aWord.CompareTo(b.aWord);
}

A problem here is that a String GetHashCode() returns different values on a 32 bit platform then a 64 bit platform. To
make your data cross platform compatible don’t use the string GetHashCode, instead build your own string hash code
function. We do so in the VelocityDB build in class HashCodeComparer<T>.

Btree classes provided:

• BTreeSet<Key>

• BTreeSetOidShort<Key>

https://referencesource.microsoft.com/mscorlib/system/throwhelper.cs.html#73669ffe9b1ee4f4
https://referencesource.microsoft.com/mscorlib/system/throwhelper.cs.html#a7f4475a5adb54f3
https://referencesource.microsoft.com/mscorlib/system/throwhelper.cs.html#926ce40444e751ea
https://referencesource.microsoft.com/mscorlib/system/throwhelper.cs.html#50374212c96720c2
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#5fa308f32e84ca71
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#53614b1356a48c86
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#cc27fcdd81291584
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#0310f9e60182377b
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#55b75442eed79150
https://referencesource.microsoft.com/mscorlib/system/collections/hashtable.cs.html#de3ba4873d4ad06a
https://referencesource.microsoft.com/mscorlib/system/collections/hashtable.cs.html#0efbf6b94c86d68c
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#814a5437516f7e8b
https://referencesource.microsoft.com/mscorlib/system/collections/generic/iequalitycomparer.cs.html#66a06cfe895400c7
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#5fa308f32e84ca71
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#ab04c74e4792f037
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#602c049c4edafd6d
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#602c049c4edafd6d
https://referencesource.microsoft.com/mscorlib/system/array.cs.html#42e9b7616956cf94
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#602c049c4edafd6d
https://referencesource.microsoft.com/mscorlib/system/collections/generic/keyvaluepair.cs.html#8585965bb176a426
https://referencesource.microsoft.com/mscorlib/system/collections/generic/keyvaluepair.cs.html#8585965bb176a426
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#12b9bba2a1f9c3e2
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#05465da65b3ace25
https://referencesource.microsoft.com/mscorlib/system/runtime/serialization/serializationinfo.cs.html#0310f9e60182377b
https://referencesource.microsoft.com/mscorlib/system/collections/generic/dictionary.cs.html#16608da9b9b4dde9
https://referencesource.microsoft.com/mscorlib/system/collections/generic/keyvaluepair.cs.html#8585965bb176a426
https://velocitydb.com/Help/html/f12b67ba-577a-7b2e-43a4-d489688f753e.htm

• BTreeMap<Key, Value>

• BTreeMapOidShort<Key, Value>

Sample usage:

public Lexicon(ushort nodeSize, HashCodeComparer<Word> hashComparer, SessionBase session)
{
 wordSet = new BTreeSet<Word>(hashComparer, session, nodeSize);
}

BTreeMap<Key, Value>

Represents a collection of keys that is maintained in sorted order. Each key has an associated value. A persistent BTree

references its contained objects by Oid instead of direct object references. This way, we will only open the referenced

objects on demand which reduces memory usage and initial BTree load time. Exceptions are ValueType keys and values.

For more see https://velocitydb.com/Help/html/f12b67ba-577a-7b2e-43a4-d489688f753e.htm

Indexes
Indexes is a simplified, automated, way of implicitly defining and keeping BTreeSet<Key>s up to date when objects are

added, deleted and updated. An index is defined by using the class or field [Index] attribute. Indexes for a persistent

Type is stored in its own system selected database, the range of databases used is between 66000 up to 66000 + the

number of Types and versions of a type that your application store persistently. An object gets added to its indexes

when an object is persisted. Make sure to set all indexed fields to desired indexed values before persisting object. When

an indexed object is updated, its indexes get updated when the page of the objects gets flushed to disk. You can force it

to be flushed to disk and have the index updated by calling Write() on the object you updated (after you made the

changes and object is an OptimizedPersistable). If you made a change that does not affect the index, you did not modify

an indexed field, you don’t need to update the index explicitly since the index is unaffected. An object is removed from

its indexes when it is unpersisted and when Update() is called. If you want to index objects separately for each

Database, tag the class or field with the attribute [OnePerDatabase]. Before modifying an indexed field, it is important

to call Update() on the object having the field before doing the update because the object needs to be removed from its

indexes before updates or else the removal code will fail to find the object in its indexes leading to an index corruption.

Call FlushUpdates() or FlushUpdates(Database db) on the session after the changes have been made to add it back to

indexes. Use only with subclass of OptimizedPersistable.

Using a worker thread to add indexed objects to its indices
Starting in VelocityDB 4.5, we added a feature that reliefs the main database thread from the work of adding objects to

indices. This feature is available with SessionNoServerShared. You can make the indexing happen in the main database

thread by setting session.AddToIndexInSeperateThread = false; If object indexed contains an [OnePerDatabase]

index then indexing will happen in main session thread.

Class level index
When you want an index with compound keys, like order by lastName and then if two or more lastnames are equal by

firstName and if two or more firstNames are equal, order these otherwise equal objects by yet another field name and

so on. We currently only allow one class level index (by multiple compound keys) per class.

[Index("modelYear,brandName,modelName,color")]
 public abstract class Vehicle : OptimizedPersistable
 {
 string color;
 int maxPassengers;
 int fuelCapacity; // fuel capacity in liters
 double litresPer100Kilometers; // fuel cunsumption

https://velocitydb.com/Help/html/98f8a54b-7a2c-4e68-d37f-b01a7b7b4719.htm
https://velocitydb.com/Help/html/f12b67ba-577a-7b2e-43a4-d489688f753e.htm

 DateTime modelYear;
 string brandName;
 string modelName;
 int maxSpeed; // km/h
 int odometer; // km

You can also use the class level Index attribute without specifying any field names; in that case the contained objects are
sorted by the default ordering of the class which is normally by Oid (Id).

Using a class level index

To iterate all Cars in index sorted order

foreach (Car c in session.Index<Car>())
 Console.WriteLine(c.ToStringDetails(session));

Index by a field
This type of index sorts all persistent instances of a class by a field value. Note that in order to use this type of index in a
LINQ query, you need to tell us what property that returns the value of the field. You do that by the FieldAccessor
attribute as in sample class below. The [UniqueConstraint] attribute can be added when you don’t want multiple
objects with the same field value in the index. An exception is raised if you add a second object with the same field value
when [UniqueConstraint] is applied to the field. The [IndexStringByHashCode] attribute can also be added to string
field indexes when you don’t care about the sort order. Sorting by hash code is faster than sorting by the normal string
ordering.

 public class InsuranceCompany : OptimizedPersistable
 {
 [Index]
 [UniqueConstraint]
 [OnePerDatabase]
 string name;
 string phoneNumber;

 public InsuranceCompany(string name, string phoneNumber)
 {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

 [FieldAccessor("name")]
 public string Name
 {
 get
 {
 return name;
 }
 }
 }

Using the index by field in a LINQ query

In every source file that uses an index in a query, it is important to have

using static VelocityDBExtensions.Extensions.BTree.BTreeExtensions;

This activates the BTree extension methods that overrides the default Enumerable versions. You should see much

improved performance when using the extension methods. The following extensions methods are defined:

static public IEnumerable<Key> Where<Key>(this BTreeBase<Key, Key> sourceCollection,

Expression<Func<Key, bool>> expr)

static public int Count<Key>(this BTreeBase<Key, Key> sourceCollection)

Let us know if you want other “slow” method overrides of Enumerable with BTree.

The extensions are located in a separate assembly, so you will also need to add a reference to it or use the

VelocityDBExtensions NuGet.

If you don’t want to drag in all the additional assembly references, we are currently duplicating the BTree extensions

code within the VelocityDB assembly.

So you can use using static VelocityDb.Collection.BTree.Extensions.BTreeExtensions; instead to avoid these
additional dependencies. We put this code in the open source VelocityDBExtensions so that YOU could help us improve
this complicated expression tree code! Any assistance is appreciated and will be rewarded with a VelocityDB license
discount.

var q = from company in session.Index<InsuranceCompany>("name")
where company.Name == "AAA" select company;

foreach (InsuranceCompany company in q)

 Console.WriteLine(company.ToStringDetails(session)); // only one will match

Enable index usage trace

Not every LINQ query will end up using the fast path with direct index lookups instead of the default Enumerable.Where,

this can be because your query contains non indexed fields or because the linq query somehow does not match the

Enumerable.Where extension provided with VelocityDB. To find out, enable index tracing by calling

session.TraceIndexUsage = true;. If index is used by a query then you will see output to Console like:

20:42:12:982 Index used with BTreeSet<Country> 66206-1-1

If index is not used, there will be no output to Trace. If you also want output to Console add the code:
Trace.Listeners.Add(new ConsoleTraceListener());

Simplify the query as much as possible

The following query will use the fast path

BTreeSet<Country> countryIsoIndex = session.Index<Country>("ISO");
string homeCountry = (string)airline_element.Element("Home_Country");

var res_country_q = from country in countryIsoIndex
 where country.I_ISO == homeCountry
 select country;
Country res_country = res_country_q.FirstOrDefault();

The following equivalent will use the slow non VelocityDB enumeration. The thing that makes it not use the VelocityDB

extension is specifying the type of country (Country country). Leave it out and it will be much faster! Anyone knows

why???

var res_country = (from Country country in session.Index<Country>("ISO")
 where country.I_ISO == (string)airline_element.Element("Home_Country")
 select country).First();

Changing indexing for a class after objects of that type already persisted
Changing indexing is handled the same way as any changes to a class definition. For example, if you start out with the

following class definition and you commit some

[Index("modelYear,brandName,modelName,color")]
public abstract class Vehicle : OptimizedPersistable

{
 [Index]
 string color;
 int maxPassengers;
 int fuelCapacity; // fuel capacity in liters
 [Index]
 double litresPer100Kilometers; // fuel cunsumption
 [Index]
 [UniqueConstraint]
 Guid guid = Guid.NewGuid();
 DateTime modelYear;
 [Index]
 [IndexStringByHashCode]
 string brandName;
 string modelName;
 List<VelocityDbSchema.Person> owners;
 int maxSpeed; // km/h
 int odometer; // km

AND later change it to

[Index("modelYear,brandName,modelName,color")]
public abstract class Vehicle : OptimizedPersistable
{
 string color;
 int maxPassengers;
 int fuelCapacity; // fuel capacity in liters
 [Index]
 double litresPer100Kilometers; // fuel cunsumption
 [Index]
 [UniqueConstraint]
 Guid guid = Guid.NewGuid();
 DateTime modelYear;
 [Index]
 [IndexStringByHashCode]
 string brandName;
 string modelName;
 List<VelocityDbSchema.Person> owners;
 int maxSpeed; // km/h
 [Index]
 int odometer; // km

You will need to convert all your existing Vehicle objects to this updated class definition.

session.UpdateClass(typeof(Vehicle));
foreach (var v in session.AllObjects< Vehicle >())
{
 v.UpdateTypeVersion();
}

This code will remove all Vehicle objects from the “string color” index and will create a new index and add all Vehicle to

“int odometer” index.

System.OutOfMemoryException
Make sure that your process is not running as a 32-bit process on a 64-bit Windows, as a 32-bit process you will get the

OutOfMemoryException at around 1.5 GB. Use the Task Manager as a way to determine if your process runs as a 64bit

process. 32-bit processes has their name appended with the string “(32 bit)”, also do not use the “Visual Studio Hosting

Process” – it’s in your projects Debug options - if it is running as a 32 bit process. If your project is using .NET 4.5 make

sure that you do not have the option “Prefer 32 bit” set. If this isn’t set but your process still is 32 bit then change to use

.NET 4.0 as a work around. If you absolutely need to run your process as 32-bit then tell VelocityDB to limit its caching by

setting: DataCache.MaximumMemoryUse = 1100000000; to limit the memory usage.

Limiting graph of objects in memory
When an object is opened by a session object, all object referenced by that object are also brought into memory. In

some cases that isn’t desired. You can limit the size of such graphs by using WeakReferenceList or the BTree collections

which avoids bringing in all the contained objects. These collections avoids bringing in all referenced objects by not

having straight forward C# object references everywhere; instead references are replaced by the object identifier of the

referenced object, as in:

 internal UInt64 comparisonByteArrayId;
 internal UInt64[] keysArray;
 internal UInt64[] valuesArray;

Here each UInt64 is the Id of some persistent object. The BTree fetches such objects on demand:

internal override Key GetKey(int index)
{
 if (IsPersistent && UseAlternateKeys == false)
 return Session.Open<Key>(keysArray[index]);
 else
 return keysArrayAlternate[index];
}
For single non array references VelocityDB provides WeakIOptimizedPersistableReference<T> as in:

aMan.spouse = new WeakIOptimizedPersistableReference<VelocityDbSchema.Person>(aWoman);

to get the value use public T GetTarget(bool update, SessionBase session).

You can examine how large a loaded object graph might be by examining the Schema Type Connections using the

Database Manager.

Implementing your own classes with weak references
Here is one example that we use with the AllSupported sample project.

 public class WeakReferencedConnection<T> : OptimizedPersistable where T : OptimizedPersistable
 {
 UInt64 _objId;
 static WeakReferencedConnection()
 {
 var list = new List<Type> { typeof(T) };
 Schema.WeakReferencedTypes[typeof(WeakReferencedConnection<T>)] = list; // register this weak
reference with schema so that DatabaseManager can recognize this as being a weak referenced object
 }

 public WeakReferencedConnection(T t)
 {
 if (!t.IsPersistent)
 throw new PersistedObjectExcpectedException("Persist first");
 t.Session.Persist(this);
 _objId = t.Id;
 }

 public T MyWeakReferencedObject
 {
 get
 {
 return Session.Open<T>(_objId);

 }
 }

 }

Using only weak references between objects
A benefit of using only weak references is that object caching can be optimized. If your application only uses weak

references, such as the case with schema used with VelocityGraph, you can set:

SessionBase.ClearAllCachedObjectsWhenDetectingUpdatedDatabase = false;

This way you preserve object cache for objects in databases that are up to date in cache. Only objects in a database that

is found to have been updated by another transaction is invalidated. This can be a significant performance boost

depending on how often updates occur.

Lazy load of object references
Another way of limiting what gets loaded when an object is open is the LazyLoadMembers property on
OptimizedPersistable

/// <summary>
/// By default all fields are loaded when opening a persistent object but an option is provided to load
members on demand (lazy loading).
/// </summary>
public virtual bool LazyLoadFields
{
 get
 {
 return false;
 }
}

When a class uses lazy loading of fields, each field access must make sure the field is loaded first.

 public LazyLoadPropertyClass MyRef
 {
 get
 {
 Session?.LoadFields();
 return myRef;
 }
 set
 {
 Update();
 myRef = value;
 }
 }

Specifying depth to load at object open
An alternative to the lazy load property is to specify depth to load at object open.

LazyLoadByDepth lazy = (LazyLoadByDepth)session.Open(id, false, false, 0); // load only the root of the object graph

Session caching of databases, pages and slots
Each session object maintains a cache of databases, pages and slots. The caching is mostly using weak references.
Database pages also have a strong reference cache which is released when available memory is low. By default objects
and pages are cached with strong references, unless you override the session constructor parameters for this, but if an
object’s class overrides the Cache property, object caching may not happen for that type of objects. If a cashed Database

is found to be out of date, all objects cached are released (even objects cached for other Databases). This is to be sure
we don’t end up using stale objects indirectly via object references.

Strong reference caching can be disabled by creating the session instance with a parameter that disables caching.
Avoid having strong references to persistent object between transactions since a strong referenced object cannot be
updated in case the object was updated by another session. Look up persistent objects from scratch in each new
transaction so that stale objects can be avoided.

Here is an example of how to create a session without strong referenced page cache and without string object cashing:
using (SessionNoServer session = new SessionNoServer(s_systemDir, 5000, optimisticLocking: false,
enablePageCache: false, objectCachingDefaultPolicy: CacheEnum.No)) {}

Some sections of your code might benefit from object/page caching while other sections do not. You can control the
caching as done below.

session.ObjectCachingDefaultPolicy = CacheEnum.No; // the following processing works faster without
object caching when < 40GB memory not available
session.ClientCache.PageCacheEnabled = true; // strong reference page caching is beneficial in this
case

It is also possible to enable object/page caching for selected databases. These settings don’t persist, it is just until such
objects/pages are purged from memory due to memory usage limitations or due to updates from other transactions.
Such selected settings are useful when ingesting a billion objects with indexing. Turn on caching of indexing objects and
its pages but not for the billion objects!

root.Page.Database.PageCacheEnabled = true;
root.GeoHashToNode.Page.Database.PageCacheEnabled = true;
UInt32 dbNum = session.DatabaseNumberOf(typeof(BTreeLeaf<Int64, Node>));
Database db = session.OpenDatabase(dbNum, false, false);
if (db != null)
 db.PageCacheEnabled = true;
root.Page.Database.ObjectCachingDefaultPolicy = CacheEnum.Yes;
root.GeoHashToNode.Page.Database.ObjectCachingDefaultPolicy = CacheEnum.Yes;

Databases are cached using weak references by default but you can force use of strong references to existing databases
using api on SessionBase.

session.CrossTransactionCacheAllDatabases();

session.CrossTransactionCache(db, true);

Diagnostics
When you notice that something isn’t the way it should be, maybe something is taking longer than expected, there is

useful option you can turn on that logs all activities related to all database files or files of selected databases.

To turn on tracing for a specific database (in this case database 55), use SessionBase api:
session.SetTraceDbActivity(55);

To turn on tracing of all databases use: session.SetTraceAllDbActivity();

Handling exceptions thrown by VelocityDB
A VelocityDB application should handle exceptions thrown by the VelocityDB kernel.

try

{
 using (SessionNoServer session = new SessionNoServer(systemDir))
 {
 session.BeginRead();
 …
 session.Commit();
 }
}
catch (Exception ex)
{
 Console.WriteLine(ex.ToString());
}

Here is a list of the current possible VelocityDB exceptions:

AlreadyInCommitException
AlreadyInTransactionException
DatabaseAlreadyExistsException
DatabaseDoesNotExistException
DatabaseReadLockException
DesKeyMissingException
FieldDoesNotExistException
IndexDatabaseNotSpecifiedException
IndexDatabaseOrBTreeMissingException
IndexDatabaseSpecifiedForGlobalIndexException
InternalErrorException
InTransactionException
InUpdateTransactionException
InvalidChangeOfDatabaseLocation
InvalidChangeOfDefaultLocationException
MaxNumberOfDatabasesException
NotInTransactionException
NoValidVelocityDBLicenseFoundException
NullObjectException
ObjectDoesNotExistException
ObjectNotInSameDatabaseAsOidShortCollectionException
OpenDatabaseException
OptimisticLockingFailed
PageDeadLockException
PageDoesNotExistException
PageReadLockException
PageUpdateLockException
PersistedObjectExcpectedException
RequestedPlacementDatabaseNumberNotValidException
RequestedPlacementPageNumberNotValidException
SubscriptionsNotAvailableWithNoServerSessionException
SystemDatabaseNotFoundWithReadonlyTransactionException
TryingToBeginReadOnlyTransactionWhileInUpdateTransactionException
TryingToDeleteDeletedDatabaseException
UnexpectedException
UniqueConstraintException
UpdateLockFailedException
WeakReferenceMustBePersistentException

Database Manager
Use DatabaseManager for administrating all your databases. Using Database Manager is a great way to inspect your

data, making sure it looks the way you expect it. DatabaseManager is available in the sample VelocityDB.sln provided

with the VelocityDB download.

Starting Database Manager
Startup Database Manager (it is in your Start menu). Before you start it you may want to look at

DatabaseManager.exe.config in your installation folder and change settings to fit your case. You also want to put your

VelocityDB license database, 4.odb, into the DatabaseManager database folder.

An initial admin database is created. This database contain info about all other databases you “Add” to the Database

Manager.

Objects are initially lazy loaded
This means you will need to make sure your objects are fully loaded when the object ToString method is called. If you

override Tostring() and it uses non primitive fields to render string, first call Session.LoadFields(this); to make sure

all required fields are loaded.

Objects are automatically loaded once you drill down into child objects.

Browsing objects created by Baseball sample application.
Click on the “Add” menu item.

Click Browse… to find the directory of your Baseball databases (build & run this sample first if you have not) then add

the VelocityDBSchema.dll to list of classes assemblies and click OK button. Click on arrows to expand.

Validating Objects in your databases
Run SessionBase.Validate() on your databases. It checks to make sure that all objects in your databases can be opened

without errors.

If all is good

Backing up (copy) all your database files

You now have a copy of the Baseball databases in a new folder. You can add this folder to the Database Administrator if

you like.

Database Schema Connections
Click on Database Manager menu bar “Schema Connectivity”, a second window is opened.

This window shows how the types of your persisted objects are connected via direct (strong) object references and via

indirect (weak) references.

It is possible to hide all weak references by right click on “Internal built in types or User defined types.

Backup & Restore using Database Manager
We will go through a simple scenario for this. Using a backup DatabaseLocation is not a one-time backup of your

databases. When you create a backup DatabaseLocation a contiguous backup of all changes to the backed up

DatabaseLocation starts and continues forever. The backing up is managed by the VelocityDBServer whenever you

commit a change. All history of your changes is by default kept in the backup DatabaseLocation.

Create Database

Startup Database Manager

An initial admin database is created. This database contain info about all other databases you “Add” to the Database

Manager. Now click on the “Add” menu item.

Fill in the requested data and click on OK

Create a backup Database Location

Right click on the newly created database and select “New DatabaseLocation…”

Fill in requested DatabaseLocation data like above and click on OK. Expand to see the new DatabaseLocation.

Create some persistent objects

We now have some persistent objects and a backup of all data in original DatabaseLocation.

Simulate loosing files in original DatabaseLocation

Manually delete 16.odb in original DatabaseLocation

TO (by deleting using file Explorer)

Restore these databases from backup DatabaseLocation

Be sure to expand before deleting the files!

Your database file is now restored in your original DatabaseLocation.

Restore a backup DatabaseLocation to a brand new directory
A backup DatabaseLocation can be used to create a new set of databases on a new host and directory. Given the backup

made in prior section, we will show how to use it to create a new DatabaseLocation in a new directory.

Startup DatabaseManager and click on “Add”

Fill in data like above. The above “Database Number” correspond to the first database in the backup DatabaseLocation,

by default we set it to 100000000. Click OK.

You now have a brand new DatabaseLocation with all the data backed up in the backup DatabaseLocation.

Using LINQPad to make VelocityDB LINQ queries/browsing
Here is how to set it up. Start by downloading and installing LINQPad from http://www.linqpad.net/. Start it. It should

look like this:

Click on “Add connection”, takes you to this:

http://www.linqpad.net/

Click on “View more drivers…”, takes you to this:

Click on “Browse…”, select the file VelocityDBLinqPad.lpx from your VelocityDB installation directory

Then select the VelocityDB data context and click on “Next >”

You should now see:

Choose DB Directory and Assemblies. Choose the assembly where your persisted classes are defined. If these are

defined in an .exe file you may have to move them to a library project instead and reference it from your .exe.

Then press “OK”, should take you to this (in this case using Sample3 database directory from VelocityDB.sln samples)

Scroll down to “Sample3_Persons”, select and right click with mouse, choose “Sample3_Persons.Take(100)”

Result should now show as:

Issues with current LINQPad driver

Proper class names are not displayed, above “Sample3_Persons” should really be

‘VelocityDbSchema.Samples.Sample3.Person” as shown when you expand to see properties. Also objects and classes of

template classes are not included. We’ll try to resolve these issues as soon as possible but it’s tricky due to using

properties to expose each class and property names cannot have the characters “.<>” in them.

Controlling the in memory page and object caching
Be default VelocityDB tries to cache database pages whenever there is enough available RAM memory. You can control
how much enough RAM memory is by API on the DataCache object that is accessed from a session object by the
property ClientCache. You can also completely turn off page caching by specifying this as one of the optional
parameters when creating a session. Object caching is also supported, see how to here.

Verifying all objects and references
The Verify.exe application provided in the sample solution can be used to verify your data. Run Verify.exe and specify as

command line parameter the directory where your databases are located. Verify.exe walks through all objects and

opens all their references and it iterates though all enumeration types such as BTreeSet and other collections. An

exception will be thrown if a failure is found. You can also verify all objects by API using SessionBase.Verify().

Scalability
A single session can manage uncompressed data at a maximum size of a half trillion terabytes (half a yottabyte). To

reach that maximum size you need 4 billion databases (.odb files) with 65 thousand pages in each and each page size

near 2 GB. An application can simultaneously use multiple sessions so total data size is unlimited.

• 2 GB is maximum size for a page. Limit is due to .Net 2GB limitation of byte[].

Given this 2GB size limitation, it is not possible to persist objects such as Dictionary<TKey, TValue> that are larger than 2

GB. However, our BTree and BTreeMap collections can be used because they are composite objects where each each

objects is smaller than 2GB no matter how large the total size of the collection (or map).

Database backup and restore
Database backup is an option on each DatabaseLocation, you can request that all databases of a specified
DatabaseLocation are backed up to a backup DatabaseLocation. This API is currently only supported with
ServerClientSession.

Backup
The following code create a backup DatabaseLocation for the default DatabaseLocation (the one containing the
system database 0, 1, 2, and 4)

using (ServerClientSession session = new ServerClientSession(systemDir, Dns.GetHostName()))
{
 const bool isBackupLocation = true;
 session.BeginUpdate();
 DatabaseLocation backupLocation = new DatabaseLocation(Dns.GetHostName(),
 "c:/NUnitTestDbsBackup",
 (uint)Math.Pow(2, 24),
 UInt32.MaxValue,
 session,
 false,
 PageInfo.encryptionKind.noEncryption,
 isBackupLocation,
 session.DatabaseLocations.Default());
 session.NewLocation(backupLocation);
 session.Commit();
}

From now on, every time a default DatabaseLocation database is created/updated, it will be backed up to the backup

DatabaseLocation.

Restore
The following code restores the default DatabaseLocation from its backup.

using (SessionNoServer session = new SessionNoServer(systemDir))
{
 session.BeginUpdate();
 DatabaseLocation backupLocation = new DatabaseLocation(Dns.GetHostName(), "c:/NUnitTestDbsBackup",
(uint)Math.Pow(2, 24), UInt32.MaxValue, session,
 false, PageInfo.encryptionKind.noEncryption, true, session.DatabaseLocations.Default())
 session.RestoreFrom(backupLocation, DateTime.Now);
 session.Commit(false, true);
}

CopyAllDatabasesTo
A fast and easy way to backup your databases is to use SessionBase.CopyAllDatabasesTo, as in

https://msdn.microsoft.com/en-us/library/hh285054(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx

 using (ServerClientSession session = new ServerClientSession(systemDir))
 {
 session.CopyAllDatabasesTo(copyDbsDir);
 }

 using (SessionNoServer session = new SessionNoServer(copyDbsDir))
 {
 session.BeginRead();
 session.Verify();
 session.Commit();
 }

ExportToCSV and ImportFromCsv
SessionBase provides a to and from CSV file option. The CSV export files contains one csv file for each Type stored in the

databases.

VelocityDbServer.exe
This is a server process that manages data transfer between client and server hosts. It also handles the page/database

locking and manages a shared cache. The use of this server process is optional but is requires in order to distribute

databases and the server is also required when page level locking is requested.

VelocityDbServer.exe is installed as a service unless you did the install choosing VelocityDbNoServer.exe. You can

configure it using the Windows Computer Management

If you don’t want it running as a service, you can remove it after stopping by the command: sc delete VelocityDbServer.

Or simply change the “Automatic” start to “Manual” start.

The server can be started from command line: VelocityDbServer true 10

Substitute “10” with how many worker threads you want it to use for each system database directory (one containing

0.odb, 1.odb, 2.odb 4.odb) this server is serving. The process runs as background process. A non-service

VelocityDbServer is stopped by using the Task manager.

In order to distribute databases to multiple hosts, you need to install VelocityDb on each host where you want to place

databases.

The VelocityDbServer is communicating on tcp/ip port number: 7031. This server can only handle .NET clients, not .net

core clients. .net core clients use port 7032 instead and the server is VelocityDbCoreServer. Both these servers are

installed as services by the installer.

Make sure that your Firewall lets VelocityDbServer listen/talk to other hosts with VelocityDbServer running on them.

If you are experiencing issues with the VelocityDbServer, it may help to look at the VelocityDBServerLog in the Event log,

as in

Changing the default SessionBase. BaseDatabasePath in a VelocityDbServer
Edit VelocityDbServer.exe.config (in Program Folder (x86)\VelocityDB)

<?xml version="1.0"?>
<configuration>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/></startup>
 <appSettings>
 <add key="BaseDatabasePath" value="c:\Databases"/>
 <add key="DoWindowsAuthentication" value="false"/>
 <add key="NumberOfWorkerThreads" value="10"/>
 </appSettings>

</configuration>

Option to log all activity in VelocityDBServer
You can turn on a log of all activity in a VelocityDBServer by setting the file path of ServerActivityLogFile. Set to empty

string if you don’t want it.

<?xml version="1.0"?>
<configuration>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/></startup>
 <appSettings>
 <add key="BaseDatabasePath" value="c:/Databases"/>
 <add key="DoWindowsAuthentication" value="false"/>
 <add key="NumberOfWorkerThreads" value="10"/>
 <add key="ServerActivityLogFile" value="d:/serverLog.txt"/>
 <add key="TcpIpPortNumber" value="7031"/>
 <add key="MaximumMemoryUse" value="10000000000"/>
 </appSettings>
</configuration><?xml version="1.0"?>

Changing the tcp/ip port number used when communication with a VelocityDBServer
By default, VelocityDbServer is communicating on tcp/ip port number: 7031.

If you need to use a different port number, set SessionBase.s_serverTcpIpPortNumber and update

VelocityDBSerber.exe.config (in VelocityDB installation directory) of each VelocityDB installation where you want this

change.

Enabling Windows Authentication
By default Windows Authentication is now disabled when connecting to a VelocityDBServer. It is disabled by default due

to a slight performance cost when connecting to a server and also due to issues with making it work with Windows 8.1

clients.

Edit VelocityDbServer.exe.config (in Program Folder (x86)\VelocityDB)

<?xml version="1.0"?>
<configuration>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/></startup>
 <appSettings>
 <add key="BaseDatabasePath" value="c:\Databases"/>
 <add key="DoWindowsAuthentication" value="false"/>
 <add key="NumberOfWorkerThreads" value="10"/>
 </appSettings>

</configuration>

 In each of your clients set

SessionBase.DoWindowsAuthentication = true;

VelocityDBCoreServer with http REST Api
Preview release of VelocityDB http API via Asp.Net Core 3.1 server combined with regular VelocityDBServer functions all

in one. Connect as: localhost:7033/active, this server uses port 7032 for VelocityDBServer functions. .NET Core have a

mismatch with regular .NET in type names. Specifically noticed so far is mscorlib -> System.Private.CoreLib.To test

using this server instead of regular .NET one, build a .netcore application using ClientServerSession.

API will eventually almost everything imaginable that can be done: retrieving object by id, creating new objects, deleting

objects, updating objects, authentication…

What we probably will not support:

- Creating new classes or other Type instances. DLLs containing the application classes will have to be provided to

server, so it can work with such object instances.

Let us know what you would like to see in this https REST API? We really appreciate all input. The source code of the

VelocityDBCoreServer will soon be included in our sample solution and on GitHub.

Active connections to VelocityDBCoreServer

In screen capture above we see an active database session coming from DatabaseManager which includes a core server

connection to databases in Sample.

Viewing object

Updating object
Here we use the excellent tool called Postman

https://www.getpostman.com/

Now back in Chrome browser we can see that object was updated.

Adding Object

Not that we didn’t specify Id in the Json body of the message.

Seetings for the VelocityDBCoreServer
To change settings you have to first stop the servers: VelocityDBServer and VelocityDBCoreServer in the Services

Window. You may have to stop them multiple times as shutdown isn’t graceful right now and it restarts. Windows

makes it hard to edit the file. You may have to save edited version somewhere else and then move the file via an

Administrator command line shell. Sorry about that.

Settings file is in: C:\Program Files (x86)\VelocityDB\core (or similar path from your Windows drive)

The server needs access to your application schema built as a .Net Core 3.1 library. A regular .Net library doesn’t work

as .Net Core Types differ from regular .Net (a Microsoft issue, not our). Specify path in “Schema” section of the

appsettings, if multiple separate with a ,.

Chrome Json Formatter

With the formatter the JSON code looks much better!

Why installation ends up in Program Files (x86) instead of Program Files?
An issue is that Install Shield LE 2013 does not support 64bit installers so installation ends up in Program Files (86)

instead of Program Files.

We use Install Shield LE 2013 which comes with Visual Studio. For VelocityDbServer service install we create a merge

module using WiX Toolset.

The latest version with Visual Studio 2013 is supposed to support 64 bit installers but we have not figured out how to do

it yet. Be patient, we will solve it eventually or let us know how it’s accomplished!

.NET CORE
This version of the VelocityDB library lets you build portable apps that can run on multiple platforms including:

Windows, Linux and Mac. Reference VelocityDBCore.dll in your app or install the VelocityDB NuGet.

http://wixtoolset.org/
https://www.microsoft.com/net/core#windows
https://www.nuget.org/packages/VelocityDB/

This platform requires a default constructor as with Universal Windows. The API provided by .Net Core libraries is not

yet complete. Notably missing and causing performance/functionality issues for VelocityDB are:

1. ResolveEventHandler

2. Assembly.LoadWithPartialName

3. Environment

4. public static Type GetType(string typeName, Func<AssemblyName, Assembly> assemblyResolver,

Func<Assembly, string, bool, Type> typeResolver, bool throwOnError)

5. FormatterServices.GetUninitializedObject

6. AppDomain

7. Trace

Consequences of missing API include: each persisted class must have a constructor with no parameters, a Type cannot

be loaded if the assembly version is changed so we’ll have to NOT update the assembly version of VelocityDBCore.dll.

.NET 5 and .NET Standard 2.0
Most or all the above-mentioned missing API is now available with .NET 5 (was .NET Core), .Net Standard 2.0 is no longer

missing any of this API.

Universal Windows
This version of the VelocityDB library lets you build native Windows apps, compiles to machine code as with unmanaged

C++ applications. Reference VelocityDBUniversalWindows.dll in your app or install the VelocityDB NuGet.

This platform requires a default constructor as with .Net CORE. The API provided by Microsoft for Universal Windows

libraries is not yet complete. Notably missing and causing performance/functionality issues for VelocityDB are:

8. System.Security.Cryptography

9. Thread

10. TcpClient

11. Environment

12. System.Reflection.Assembly

13. Assembly.LoadWithPartialName

14. Dns

15. public static Type GetType(string typeName, Func<AssemblyName, Assembly> assemblyResolver,

Func<Assembly, string, bool, Type> typeResolver, bool throwOnError)

16. Type.GetTypeCode

17. DynamicMethod

18. FormatterServices.GetUninitializedObject

19. Console

20. AppDomain

21. Trace

Consequences of missing API include: each persisted class must have a constructor with no parameters, a Type cannot

be loaded if the assembly version is changed so we’ll have to NOT update the assembly version of

VelocityDBUniversalWindows.dll.

Where to store databases with Universal Windows?
We tested using this path: Windows.Storage.ApplicationData.Current.LocalFolder.Path;

https://msdn.microsoft.com/en-us/library/system.resolveeventhandler(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.assembly.loadwithpartialname(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee332932(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee332932(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatterservices.getuninitializedobject(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/dn726767.aspx
https://www.nuget.org/packages/VelocityDB/
https://msdn.microsoft.com/en-us/library/system.security.cryptography(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.thread(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.sockets.tcpclient(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.environment(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.assembly(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.assembly.loadwithpartialname(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.dns(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee332932(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee332932(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.type.gettypecode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.emit.dynamicmethod(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatterservices.getuninitializedobject(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.console(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.appdomain(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=vs.110).aspx

We tried to set the SessionBase.BaseDatabasePath to this but then when ran into errors while doing the obfuscation

of the library. We will try again! No obfuscation required with apps since they are compiled to binary code as with C++!

iOS
The installation directory contains iOS\VelocityDB.dll and iOS\VelocityDB.xml, add a reference to this DLL if you are

targeting iOS for your application. Some of the VelocityDB code is not as efficient on iOS due to System.Reflection.Emit

not being supported, see reasons here.

Android
The installation directory contains Android\VelocityDB.dll and Android\VelocityDB.xml, add a reference to this DLL if you

are targeting Android for your application. You can develop Android applications using Visual Studio 2015 with Xamarin.

We currently don’t have any sample applications but follow the Android Xamarin guides and ask us if you get stuck with

how to use it with VelocityDB.

Asp.Net Identity
A driver for storing user credentials in VelocityDB using Asp.Net Identity is part of the VelocityDB.sln and a sample Web

site, AspNetIdentitySample, is also provided that uses asp.Net Identity with VelocityDB. These projects require .Net 4.5.2

or higher.

Application Deployment and VelocityDB license check
Normally you need to deploy the license database, 4.odb, but if you are publishing your application as open source or

your database files in a publicly accessible directory then do not include 4.odb since that would enable unlicensed usage

of VelocityDB. Instead register all your persistent classes prior to deployment and deploy database 1.odb which then

contains your entire database schema. VelocityDB may do a license check whenever database schema is added to or is

updated.

Setting Up the sample Web Site (VelocityWeb) on a hosting web site (in this case GoDaddy)

The VelocityDB sample solution contains a sample web application using VelocityDB, here we show you how to deploy

this application.

Transfer all the files to your hosting account
Copy the entire directory named VelocityWeb to the root of your hosting directory. We use FileZilla (free software).

https://developer.xamarin.com/guides/ios/advanced_topics/limitations/
https://developer.xamarin.com/guides/android/
http://blogs.msdn.com/b/webdev/archive/2015/04/07/asp-net-identity-2-2-1.aspx

Login to your hosting provider to enable write access to a few of the directories in the application

Create an application root virtual directory for the new web application

Wait a few minutes then point your browser at your web application

If you transferred your application directory with databases then install your databases in their

new loacftion.

If all is well, you are done, access the application and the databases!

